Prolyl Hydroxylase Domain-Containing Protein 2 (Phd2) Regulates Chondrocyte Differentiation and Secondary Ossification in Mice

نویسندگان

  • Shaohong Cheng
  • Patrick Aghajanian
  • Sheila Pourteymoor
  • Catrina Alarcon
  • Subburaman Mohan
چکیده

Endochondral ossification plays an important role in the formation of the primary ossification centers (POCs) and secondary ossification centers (SOCs) of mammalian long bones. However, the molecular mechanisms that regulate POC and SOC formation are different. We recently demonstrated that Prolyl Hydroxylase Domain-containing Protein 2 (Phd2) is a key mediator of vitamin C effects on bone. We investigated the role of Phd2 on endochondral ossification of the epiphyses by conditionally deleting the Phd2 gene in osteoblasts and chondrocytes. We found that the deletion of Phd2 in osteoblasts did not cause changes in bone parameters in the proximal tibial epiphyses in 5 week old mice. In contrast, deletion of Phd2 in chondrocytes resulted in increased bone mass and bone formation rate (normalized to tissue volume) in long bone epiphyses, indicating that Phd2 expressed in chondrocytes, but not osteoblasts, negatively regulates secondary ossification of epiphyses. Phd2 deletion in chondrocytes elevated mRNA expression of hypoxia-inducible factor (HIF) signaling molecules including Hif-1α, Hif-2α, Vegfa, Vegfb, and Epo, as well as markers for chondrocyte hypertrophy and mineralization such as Col10, osterix, alkaline phosphatase, and bone sialoprotein. These data suggest that Phd2 expressed in chondrocytes inhibits endochondral ossification at the epiphysis by suppressing HIF signaling pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conditional Knockout of Prolyl Hydroxylase Domain Protein 2 Attenuates High Fat-Diet-Induced Cardiac Dysfunction in Mice

Oxygen sensor prolyl hydroxylases (PHDs) play important roles in the regulation of HIF-α and cell metabolisms. This study was designed to investigate the direct role of PHD2 in high fat-diet (HFD)-induced cardiac dysfunction. In HFD fed mice, PHD2 expression was increased without significant changes in PHD1 and PHD3 levels in the heart. This was accompanied by a significant upregulation of myel...

متن کامل

Hypoxia-inducible factor prolyl-4-hydroxylase PHD2 protein abundance depends on integral membrane anchoring of FKBP38.

Prolyl-4-hydroxylase domain (PHD) proteins are 2-oxoglutarate and dioxygen-dependent enzymes that mediate the rapid destruction of hypoxia-inducible factor alpha subunits. Whereas PHD1 and PHD3 proteolysis has been shown to be regulated by Siah2 ubiquitin E3 ligase-mediated polyubiquitylation and proteasomal destruction, protein regulation of the main oxygen sensor responsible for hypoxia-induc...

متن کامل

Activation of the hypoxia‐inducible factor pathway induced by prolyl hydroxylase domain 2 deficiency enhances the effect of running training in mice

AIMS Hypoxic response mediated by hypoxia-inducible factor (HIF) seems to contribute to the benefit of endurance training. To verify the direct contribution of HIF activation to running training without exposure to atmospheric hypoxia, we used prolyl hydroxylase domain 2 (PHD2) conditional knockout mice (cKO), which exhibit HIF activation independent of oxygen concentration, and we examined the...

متن کامل

A hidden aggregation-prone structure in the heart of hypoxia inducible factor prolyl hydroxylase.

Prolyl hydroxylase domain-containing protein 2 (PHD2), as one of the most important regulators of angiogenesis and metastasis of cancer cells, is a promising target for cancer therapy drug design. Progressive studies imply that abnormality in PHD2 function may be due to misfolding. Therefore, study of the PHD2 unfolding pathway paves the way for a better understanding of the influence of PHD2 m...

متن کامل

Isolated erythrocytosis: study of 67 patients and identification of three novel germ-line mutations in the prolyl hydroxylase domain protein 2 (PHD2) gene.

The oxygen sensing pathway modulates erythropoietin expression. In normal cells, intracellular oxygen tensions are directly sensed by prolyl hydroxylase domain (PHD)-containing proteins. PHD2 isozyme has a key role in tagging hypoxia-inducible factor (HIF)-α subunits for polyubiquitination and proteasomal degradation. Erythrocytosis-associated PHD2 mutations reduce hydroxylation of HIF-α. The i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016